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ABSTRACT 1175
Recently, G. Aumann introduced the idea of tﬁizcomparison—
factor in approximatior. problems, This idea is here generalized
to assume the form of a general estimation principle for non-
negatively homcgeneous real functions on linear spaces. A number
of results are then proved concerning the finiteness of the
correspondingly generalized comparison-factor. In addition,
transformations of the underlying spaces are investigated which
preserve the firiteness of these factors. The results are then
applied to the special case of finite dimensional linear spaces
and to a particular case which provides a connection to earlier
results of other authors on best error bounds for optimal linear

approximations.



“m a Cenera. EBstlimaticr Principle

anrd a Theory of Comparison Factcrs

by Werner C. Fheinboldt

. INTRCDUCTILN

In a recent paper 17, ¢. Aumann introduced a concept called
the comparison-factor for linear appraximation problems. The
essential point behind Aumann's observations can be presented in
the following form:

Let X be a real or complex linear space and dq;. 9, two semi-
norms on X, Define a linear approximation problem by considering
the null space N(qz) = {xEXIq2(x) = o} of q, as the subspace of
approximating elements. Then, for given onX an element yOEN(qz)
has to be found such that
(1) ql{xo_yo) = inf ql(xo—y) = 6(xo)

yEN(qZ)

The question about the existence and unigueness of Y, shall not be
of concern here; instead, upper bounds are to be determined for
the best approximation errcr 6{xo). Of course, without any further
kncwledge about X, Or 4. 4, etc., very little can be said about
this problem, except that

6(xo) = ql(xo—y)
for any yEN(qZ). Suppose, therefore, that an additional estimate
(2) p(xoﬁ = c
is known, where p is another seminorm on X with the property that

P

N{p)eiiq,)



Then it is readily seer thrat

(3 8% ., =y

L3 X Yy €

where

{4’ v = Sup r inf qlix—yﬁ]

pix.51 " q,iy'=o
(For a gereralized estimate of this tygre see Lemma 1 below.} The
factor vy, which can, of ccurse, be infinite, depends only on the
three seminorms Ay« dy- p., and nct cn X In particular, when
4, = P, the additional conditicn N{pk:N{qzﬁ is automatically
satisfied and vy is cnly z function of the given approximation
problem; ir this case. G. Aumann calls v the comparison-factor
of this apprcximation problem.

In all cases, the significance of v is the following: The
estimate {(2) is considered a known or "accessible" estimate for
X and then the knowledge fand finiteness) of v provides an
estimate for the unknown best approximation error 6(xo). Many
well known bounds for approximation errors are examples for
estimates of the type (3)/{4). For example, in [1] it is shown
that the first theorem of D, Jackson in the theory of harmonic
analysis has this form. For details we refer to [l].%'J

Ir line with these remarks, . Aumannh observes that a
general study of the factor v certainly appears to be an impor-
tant problem of approximation theory. Such a study might include
an investigation of the functional relationship between y and the

three semincrms . 9y p; another probiem could be the

#7717 In (1] the seminorms 4, 4,, P are also allowed to assume

the value + =, For our purpcses this generalization is of little
importance, in particular, since all of the observations in [1]

concern a subspace of X in which dy/ 9, and p are finite,

i
[
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development of methods for the computation or estimation of y. 1In
this general form the problem appears to have received little
attention. However, a number of results about v are obtained in
the study of the related problem of the degree of approximation.
In that case, a seqguence {q;}' (n=1,2,...) of seminorms are con-
sidered such that N(qg+ ) O N(qg), and the behavior of 6n(xo) for
n - o is investigated,

In some ways, G, Aumann's paper [1] can be regarded as the
announcement of a "program" for the above stated general investi-
gation of the factor y. The present paper is intended to be a
contribution to this program; at the same time, it was found
necessary to free this entire problem from its setting of linear
approximation problems. This leads in Section II to an extension
of the estimation principle (3) and to a corresponding generaliza-
tion of the definition of vy which in turn permits in Section III
an attack on the important problem of the finiteness of y. The
results of Section III are based on the assumption that a certain
set is bounded. In order to weaken this condition, transformations
of the underlying spaces are considered in Section IV which leave
the comparison-factors finite. In Section V the results of the
earlier sections are applied to the special case of finite-
dimensional spaces, and finally, Section VI connects some of the
results of this paper with earlier work, notably by A. Sard [2]
and H, Weinberger and W. Golomb [3].

Grateful acknowledgement is hereby given to the U. S, National
Aeronautics and Space Administration which supported in part the
preparation of this paper under grant NsG-398, and to the U. S. Army
Research Office which stimulated this work indirectly through
research grant D-31-124-G563. The author is also indebted to
Professor J. Ortega for many stimulating discussions and for his

critical and helpful comments.



IT, THE LINEAR ESTIMATION PRINCIPLE

In the linear estimate (3) very little use is made of the
fact that the guantity to be bounded is the best-approximation
error 6(xo). In fact, the crucial property needed in deriving
(3) is the non-negative homogeneity of 5(xo) and p. Furthermore,
observe that instead of the condition N({(p) C N(q2) we use only
that ¢ = p(xo) = 0 implies 6(xo) = 0.

In order to free ourselves from the setting of linear
approximation problems, we observe that the estimate (3) is a
special case of a linear estimation principle which uses only
the above properties of 6(x0) and p.

Before phrasing this principle in the form of Lemma 1 below,
we introduce the following notation:

Throughout this paper, X,Y,Z, etc. shall always denote real
or complex linear spaces. For any subset Q € X, we denote by R(Q)
the real, linear space of all real-valued functions p defined on Q.
Consider, in particular, a subset C € X which is a cone (with
vertex zero)2], i.e., assume that tC c C for all non-negative real t.
Then for fixed given u > O, HM(C) shall be the subset of all non-
negative functions p € R(C) which are non-negatively homogeneous
of degree p, i.e.,

HM(C) = {p € R(C)| p(x) 2 0 and p(tx) = t¥p(x) for any
t 2 o and x € X}
Evidently, HM(C) is a convex cone in R(C). For the functions

p € HM(C) we introduce the sets

» 2] In the following, all cones shall always be assumed to have

vertex zero, and to contain elements different from zero.

-4 -



N (p) ot s(p) = {xec | p(x)

[
o
x
M
0
Qg
%
I
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.

and
I (p) l} ; 8%(p) = {XEC | x = o or
o < p(x) él}

Clearly N(p) is a cone in C, S(p) = So(p) U N(p) and AS(p) < S(p),

]
~A
b
m
Q2
bel
%
]

ASO(p) C So(p) for 0 = A =1, S(p) is radial in C, i.e., for
each X€C there exists a 8 = § (x) > o such that Ax€S(p) for
o =XA =8 . In fact, define § = 1 for x€N(p) and § = p—l/u if
p = p({x) > o. Finally, it is easily checked that
s°(p) = U A [(p)
O<AZ=1

Lemma l: (The Linear Estimation Principle) Given a cone C

in the linear space X and functions r,pEHu(C) , then
(5) ylr(x) = p(x) (x€C)
where

y;, = inf ply) 20 , ifr,p#O

vel(r)
and vy, = 0 otherwise. Moreover, Yy, > O only if N(p) < N(x).

If this latter condition is satisfied, then

(6) r(x) = yUp(x) for x€C

where

(7) vy = sup  r(y) = sup r(y) , and 0 <y, =
ver(p) V€S (p)

if r,p Z 0 and Yy = 0 otherwise. If r,p # 0, then either

-YU = o and 'YL = O, Or YU is finite and YLYU = l'

The factor Yy = yp(r,C) shall be called the comparison-factor

of r with respect to p on the cone C.



Proof: The case r,p = 0 is trivial. Assume r,p # 0; then there

’

exists an x€C such that ro = r(x) > 0. But then xr( r;l/M x) =1
is well-defined and 1 p(x) = p(r;l/px) =z inf p(y)
e vET(p)

and hence YL

This proves (5) for x¢N(r) and therefore for all x€C since the
inequality clearly remains valid if x€N(r). If x€N(p), then
yLr(x) = 0 and hence either V= 0 or x€N(r). If the condition
N(p) © N(r) is satisfied, and xX€C an element such that

P= p(x) > o, then it follows similarly that is defined and

that

Yy

Iyr(x) = r(p;l/px) = sup r(y) =y

Po vET(p) v

If x€N(p) then x€éN(r) and hence (6) is valid for all x€C. Moreover,

> o since otherwise r(x) = 0. Clearly, 0 < vy _= sup r(y) =

v
v veE[ (p)

=sup r(y). For yESo(p) we now find that
v€S (p)

ﬂy)=%r@b’/w =Yy = Yy

and this inequality again remains valid for y€N(p), since then

r(y) = 0. Therefore, sup r(y) =
y€s(p)

from (5) it follows that Y1, Yy = 1 and hence Yy < ® if Yy, > ©-

Yy and (7) is proven. Finally,

Similarly, (6) implies that 1 = YiYy ©OF Vg, Z © if Yy <
Together therefore, either Yg = ° and Y;, = © or < ® and

=1 .

Yu
Yi.Yu
If instead of N(p) ¢ N(r) we even have N(p) = N(r), then
Lemma 1 states that
yop(x) = r(x) = ylp(x) ~(xecC)
where Yy = yp(r,C) and Yo = l/yr(p,C) if yr(p,C) < ®



The relation between Y1, and Yu in Lemma 1 permits us to
concentrate the investigation on one of these factors. In this
presentation we consider mainly the "upper" comparison-factor
yp(r,C) . Lemma 1 evidently provides a non-triwvial result only
if we know that yp(r,C) is finite. Hence, we shall be concerned
primarily with the investigation of conditions for the finiteness
of yp(r,C) . In the case N(p) = N(r), such conditions will then
also provide results about a non-trivial lower bound for r in
terms of p.

Examples: (la) As in Section I, let dy 9y and p be three semi-

norms on the linear space X and set

r(x) = inf ql(x—y) = §(x)

q, (y)=o

Then p, rGHl(X) and clearly N(q2) C N(r) since choosing an element
X from the subspace N(q2) of approximating elements implies, of
course, that the best approximation error 6(xo) vanishes. Hence,
if we assume that N(p) < N(qz), then

6 (x) = vyp(x)
where

Yy = sup [ inf ql(x—y)]

p(x)=1 qz(y)=0

and this is exactly the estimate (3)/(4).
(1b) Let X be an inner product space and A a linear operator with

domain X and range in X. Set

p(x) = (x,x) , r(x) = |(Bx,x)|
Then clearly p,rEHz(X) and N(p) < N(r) ; hence
| (ax,x) | = v(x,x) X€X,
where
v = sup | (Ax,x) |
(x,x) =1

is finite i1f A is continuous on X.



(lc) Let X ard ¥ be normed lirear spaces and A:X-Y,B:X-Y linear
operators with domain X. Set

pix; = [[ax]| , rix) = |[Bx]
Then p,rEHl(X). Ni{p} € N{r) is equivalent to the assumption
that Ax = 0 implies Bx = 0. 1In that case we have

iBx|| = v |ax]] , vy = sup ||BY|
|ay||=1

where, as usual, v can be infinite. If X = ¥, A the identity,
and B bounded, then y is finite and equal to the norm of B.
(1d) Let X be the space of all complex n x n matrices and

r(x) = max |x p(x) = max Ile

il

J.k J
where xjk are the elements and Xl,kz,...,kn the eigenvalues of
the matrix x€X. Then r,pEHl(X) and N(r) < N(p). Hence,
max |X.| = v, max Ix. |
. 1 k
j ik

Let C be the cone of normal matrices in X. Then also N(p) < N(r),
since p(x) = 0, x€C implies the existence of a unitary matrix

WEC such that u¥x u = 0, and therefore r(x) = 0. Thus

A

??i Ixjkl Yo m?x ij| xeC

It is well known that Yy = and Y, = 1.
We end this section with a brief note about the set Hu(C).

The definitions

r < p if and only if r,pEHu(C) and N(p) < N(r)
and

r < p if and only if r < p and Yp(r,C) is finite
introduce partial orderings in HM(C). In fact, it is readily
seen that both relations are reflexive and transitive. Moreover,
with r,pEHu(C) also min(r,p) and max(r,p) are functions of HM(C)

and evidently, under both orderings, max(r,p) is a least upper



bound of r,p and minfr,p) a greatest lower bound, Yet these partial
orderirgs are not fully compatible with the linear structure of

H[._(C) . Clearly, r 4 p implies that gr £ op for any real o = O,

and r+g { p+q for ary g€ H(""(C> , and the same holds true for the
stronger ordering 4« . But it can be shown with easy examples that
r{p and g, r-q, p—-qu(“(C) dces not generally imply that r-qg <{ p-qg.
For the guestions here under consideration, this fact appears to limit

the usefulness of the above crderings.

III. BASIC FINITENESS THEOREMS FOR COMPARISON-FACTORS,

As we mentioned before, Lemma 1 has no particularly significant
value unless we know that the comparison-factor Xp(r,c) is finite.
The following lemma casts this problem into a somewhat different form:

Lemma 2: Given a ccne C in the linear space X and functions
r,p€ H&(C) suck that N(p) ¢ N{r). Then g‘p(r,C) is finite if and only
if S(r) absorbs [ (p), i.e., if and only if there exists a positive
constant k such that { (p) € kS({r).

Proof: If 5= Kp(r,c) is finite, then (6) implies immediately
that [ (p) € kS(r) for any k>o with kc‘;»_Lu. . Reversely, if S(r)
absorbs [(p), then it follows for x € [ (p) that x=ky,y € S(r) and
hence r(x) £ k‘u and therefore X € Qﬂ .

The condition that S(r) absorb [ (p) appears to be weaker than
it actually is. This is shown by the following:

Lemma 3: Let Q be a subset of X and &> o and F> 0 any con-
stants; then the followirg three conditions are equivalent:

(i) psir) = 2N [ (p)
(ii)  ps(r) o N xs”(p)
{(iii) fs(xr) > 9N *8(p)

The proof is immediate., From (i) it follows that



or T {p)nocpS{r), o<A=l, and hence that aSO(p)ﬂQ = a(}jkrwp) NQc=BS(r) .
O<AEL

(ii) implies that
ones(p) = Q \'aso(p)uN‘(p)}(omaso(p))U(QmN(p))

CBS{r)UN(p)cpS(r)UN(r)= BS(r)
and it is clear that (i) follows from (iii)

Accordingly, without loss of generality, we could have
phrased Lemma 2 in the form: yp(r,c) is finite if and only if
S(r) absorbs S(p).

Obviously, general results about the finiteness of v can be
expected only if additional conditions are placed on X as well as
on the functions r,p. As a first and basic result we obtain the

following:

Theorem 1: Consider a cone C in the topological linear space

X and functions r,pCHu(C) with N(p)cN(r) such that [(p) is a
bounded set. Then yp(r,C) is finite if for some kZl the origin
is in the relative interior of kS(r) with respect to S(p). Hence,
yp(r,C) is clearly finite if r is continuous at zero in the rela-
tive topology on S(p), or even on C.

Proof: By assumption there exists a neighborhood U of zero
such that
(8) kS (r)>Uns(p)
By definition, U absorbs the bounded set [(p), i.e., ¢ [(p)cU for
some ¢ with 0O<c=1l. Hence kS(r)oUnsS(p)oc M(p)nsS(p)=c M(p), or S(r)
absorbs [(p) and by Lemma 2, yp(r,C) is finite.
Note: Because of Lemma 3, the basic assumption (8) of this theorem
is equivalent to kS(r)DUnSo(p) as well as kS(r)oun f(p). Moreover,
boundedness of [(p) is equivalent to boundedness of So(p). In

fact, since r(p)cso(p) we need to show only that So(p) is bounded

- 10 -



if {p) is bounded. 1In that case, let W be any neighbcrhood of
zero and VcW any balanced neighborhood of zero, then c [(p)cVv
for some c>0, and hence cA [ (p;CAVcW for o<isl and finally

cs® (p)ew.

In Theorem 1 a non-topological conclusion - namely the
finiteness of vy - is deduced from a set of topological premises.
From a theoretically strict viewpoint this may be somewhat un-
satisfactory. But in many applications it does appear to be a
very natural setting for this problem to assume that the under-
lying space X is a topoldgical linear space. Moreover, the
theorem can also be rephrased to state that v is finite if there
exists any vector topology on X such that [(p) is bounded, and
zero is in the interior of kS(r) relative to S(p). The question
then arises whether there are some '"natural" topologies connected
with p and r for which the Theorem assumes a straightforward
set-theoretic form, As we shall se later, there are indeed
special cases of p when such a natural topology exists, but the
corresponding result for y is then essentially equivalent to that
of Lemma 2.

For the application of Theorem 1 it is often desirable to
replace the conditions on r and p by stronger but more "usable"
assumptions,.

A very natural condition for a function pEHu(C) is that of
the convexity of S(p). If the cone C<X is convex, i.e., if
C+OcC, and if for p=l the function pEHM(C) is subadditive, then
S(p) and N(p) are clearly convex sets. More generally, we can
give the following necessary and sufficient condition: If CX
is a convex cone and p€H (C) (p>0), then S(p) is convex if and

only if p(kx+(l—x)¥> = max(p(x),p(y)) for every x,y€C and

- 11 -



0€X e 1. This result will be contained in the statement of Lemma 4
below. See also W. Fenchel [4], p. 117.

Convexity is a fairly strong condition for S(p) and in many
instances a weaker condition will suffice. In general, a set
Q€ X shall be called quasiconvex of degree ¢ if there exists a
constant o=1 such that AQ+(l-A)Q ¢ Q for all 0€ X< 1, Clearly, a
set Q is convex if and only if it is quasiconvex of degree 1; and,
if Q is a cone, quasiconvexity of Q implies that Q is convex.

Let C « X be a convex cone, then pEHa*(C) is called a quasiconvex
function of degree o if the set S(p) is quasiconvex of degree «.

Lemma 4: Let CC X be a convex cone, then pé€H, (C) (r)-O) is

¢

quasiconvex of degree o if and only if
&) plAx+(l-N)y) £ o “max (p(x),p(y))

for x,y€C and 0€X<4& 1. If p is qguasiconvex, then N(p) is convex.
Proof: If pE%C*(c) satisfies (9), then x,y€S(p) implies that

P(AX+(1l- N)y) € o« for 06 A< 1, or Ax+(l-X)y€aS(p), i.e.,

S(p) is guasiconvex of degree «o. Reversely, let S(p) be guasiconvex

of degree w. Then clearly

(10) N(p)+N(p) € S(p) = s°(p) V N(p)

If there exist x,y€N(p) such that o< p =p(x+y) € 1, then also

tx, tyeN(p) for t >0, but tx+ty¢S(p) for ti'> (l/%). This contra-

dicts (10) and hence N(p)+N(p) € N(p), or N(p) is convex. For given

X,Y€C, now set T =max(p(x),p(y)). IfT=0, then x,y€N(p) and (9)

holds, since the convexity of N(p) implies that p(Xxx+(1- X)y) = 0

o

[}
for 0€X <€ 1. Let therefore T>0; then x,y&€ T S(p), and since

\
‘C/t S(p) is again quasiconvex of degree «, it follows that

Cﬁ which proves (9).

1
AX+(l-AN)y €T #S(p) or p(Ax+(1-N)y) &€ «
Let X be real or complex and C ¢ X a convex cone, If C=-C

then C is a real linear space and in that case p¢€ HC (C) shall be

- 12 -



called reai-symmetris if pix. = piex: for ail x€C, If X is zomplex

and x €C ‘npl.es Ax€C fcr all (A=,

[ d
m.

Yen C is a {corplex) linear
subspace of X ard ;éfqrfi} shall be callied complex syrmetric if
pidx) = pix) fcr a!l x€C ard |[A] = 1.

Consider the cus=2 when T=- ard pe;%kﬂi} fp#O) is guasiconvex

and real symmetric., Then S{p’ i1s balanced in the real linear space

C, 1.2., "SpiC Sip fcr ~. £ AX€+i, Furthermcre, tre family of sets

is a Ic7tai base of zero for a vecter topology”tp cn C, In fact,

the sets U are balanced {in tre reai space C) and abscrb every

poirnt of C. Morecver =, CU n U, fer t€min{t, ,t,) and
t t. T 1’72
L 2
Ut + ttCQ“t fer fﬂétb/édo This real topcliogical linear space C
O v

is certainly lorzlly bounded., Moreover, this topclogy tb of C is
equivalert to the one 1nduced by using as local base of zero only
the sets Tt wiil rvaticrnai £ >0, Hence,'tb has a countable local
base at zero ard 1s therefcre semimetrizable. In other words,
there exists an invariant semimetric such that each sphere around
zery is balanced ard that this semimetric induces the topology
'Cp cr: C. If&X=1, duﬂl'cp is a locally convex tcpology and is
equ.valent tec the semincurm-topology induced in C by the Minkowski
functiocnal of Sip).

Of course, similar results }old in the case that X 1s complex
and if A=C for |A|=1 and p is quisiconvex and complex-symmetric.
Examples: {23) For fixed.&«>9, let. X be tqi space of all real
sequences xX = {En,n=l”2J°n@j such that.rzglin'r' converges, Then

= ™
pix)= (rgzm lEnac>‘ € M, (X), for Ocwei,p 18 quasiconvex of degree
LAY



l_ } s - % .
2( hi/ while for uzl, S{pj is, of course, convex.

{2b) Let X be the two-dimensional real number space. Focr
x=(§lﬂ§2)€X define p(x)=2(|§1|+!§2|) if sgn§l=sgn§2 and
p(x)=|§l|+|§2I otherwise. Then p is guasiconvex of degree 2.

{2c) The last example is a special case of the following

general result: Let X be a topolcgical linear space and assume
péHu(X) has the property that S{p) is a bounded set which contains
zero as interior point. Then p is guasiconvex of some degree

@=1l. In fact, these assumptions assure that there is a neighbor-
hood U of zero such that S(p)D>U. Now a balanced neighborhood V
of zero can be chosen with V+W¥U, and since S(p) is bounded, there
exists a constant ozl such that S{p)caV. But then
AS(p)+(1l-r)S{p)CaV+aoaUcaS(p) for o=A=l, i.e., p is quasiconvex
of degree «.

We return to our question of the finiteness of y. For a
linear space X, a quasiconvex and symmetric function pEHM(X)
induces a "natural" topology Tp on X. Since the set S(p) is
bounded under T , we accordingly arrive at a very simple
specialization of Theorem 1. As was indicated earlier, however,
a closer inspection quickly shows that this special case of
Theorem 1 is in fact only a differently phrased version of
Lemma 2. Nevertheless, the following Corollary plays an impor-

tant role in many applications:

Corollary 1.1: Given a linear space X and a function pEHu(X)(p$O)

which is (real or complex) symmetric and quasiconvex. Then for

any rEHu(X) with N{p)cN(r), yp(r,X) is finite if and only if r is

contirnuous at the origin under the topology Tp induced by p on X.
Note that the topclogy'Tp may be rather unusual if X is

complex and p only real symmetric. In that case, Tp is a "real"

- 14 -



vector topology on the space X, also considered as a real linear
space,
Corollary 1.1. of course covers the case described in Example (1b).
In fact, in that case vy will be finite if the linear operator A is
continuous, since r{x)=(Ax,x) is then continuous under the norm
topology, here the Tp topology.

For the application of Theorem 1 and Corollary 1.1 it is often
useful to know when a function rEHu(X) is continuous at the origin.
For quasiconvex functions the following result holds:

Theorem 2: Let X be a topological linear space and rEHu(X)

quasiconvex. Then r is continuous at zero if either one of the
following two conditions is satisfied:

(a) The interior of S(r) is not empty

(b) X is a complete semimetrizable space and r is lower
semicontinuous on X3J

Proof: (a) By assumption there exists a neighborhood U of
zero and a point z€S(r) such that S(r)>z+U. Since -z€kS(r) for

k"zr (-z) we have Uc(z+U)+(-z)C S(r)+kS(r)ck, 8(r) for k =2omax(l,k).

Hence r is continuous at zero. "
(b) The Baire category theorem applies to X and implies

that X is of second category in itself. Since X= U nS(r), it

follows that for some integer no,nos(r) is of secg;é category in X,

hence S(r) must also be of second category in X. The lower

3] Recall that for a topological linear space X, a function
réR(X) is called lower semicontinuous on X if for each real t the
set {xEXlr(x)ét} is closed. Hence, clearly, rEHu(X) is lower

semicontinuous on X if and only if S(r) is closed.
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semiceorntinuvity of r implies that S/r) is closed. But then the
interiocr of S’r) cannot be empty since otherwise S{r) would consist
only of boundary pcints and would therefore be nowhere dense in X.
Now Part (a) applies and the proof is complete.

Note: Condition (b) of this theorem could have been replaced by the
following weaker conditiocn:

() X is complete and semimetrizable and S(r) < kS(r) for some kz1,
In fact, the same proof shows that S{r) is of second category in X
and has, therefore, ncn-empty interior. Hence, kS(r) and also S(r)
have non-empty interior,

Theorem 2, Part (a) and Theorem 1 together yield the following
result: If r,péHrﬂX), r,p$ 0 and N{p) C N(r)’,then &p(r,x) is
finite if [ {p) is bounded and if there exists a point z¢TS(r) such
that kS(r) D {z+U) for some k 2 1. It is natural to ask whether p
remains finite if we only know that z is interior to kS(r) relative
to S{p). The following theorem gives a partial answer:

Theorem 3: For the topological linear space X let r,p€H_(X)

[I
be such that N{p) € N{r) and that both r and p are guasiconvex.

Assume that [ {p) is bounded and that there exists a point z<sSO(p)
which is interior te kS(r), for some k 2 1, in the relative topology
on BS{p) where{3is the degree of gquasiconvexity of p. Then X}(r,x)
is finite,

Procf: There exists a neighborhood U of zero such that
kS(r) > (z+f)r1{38{p), Together with [ (p), also So(p) and
So(p) - s%(p) are bounded sets. Hence c(So(p)—SO(p))C U for some

c, 0 c£ 1, Then
£3(r) > (2+ WA pSie) 2 (a+ c (S(PY-SPY)) npEsk >

> ((h-o)z+ ¢ 5°(|°))n {3 S(ye) = (l-¢c)z + ¢ S°(r)
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The last relation follows directly from the fact that p is
quasiconvex cf degree B. As before, we know that -(l-c)z ¢ le(r}
where we can chocose kl =z k. Hence,
c(p) ¢ €S%p) € (1-c)z+ € S°(p)+ (—(l-C)Z> c RS(+) + %,SCr) € 2k, S(v)
or S(r) absorbs [{p) and yp(r,x) is finite.
If S{p} is not only quasiconvex but convex, then the main
condition of this last theorem can be replaced by a category

assumption for p. In fact, we find

Corollary 3.1: On the topological linear space X consider

p.xr € HM(X) with N(p) < N(r) such that p is quasiconvex of degree 1
and that [(p) is bounded and of second category in itself. If r

is quasiconvex of arbitrary degree and lower semicontinuous on X,
then yp(r,X) is finite.

o0
Proof: Set Q = nS(r) n F(p), then Mp) = U Q ,and since [(p)
n=1

is of second category in itself, there exists a neighborhood U of

zero and a point z €[(p) such thatiﬁg > (z+U) NTM(p) and therefore
o
nOS(r) = noS(r) 3‘6; D (2z+U) N T (p) and Theorem 3 applies.
o
Note: As in Theorem 2, the condition of lower semicontinuity of r

could have been replaced by the assumption that S(r) < kS(r) for
some k = 1,

The result of Corollary 3.1 represents some variation of the
so-called Absorption Theorem (see, e.g. J. Kelley, I. Namioka
et al, [5], p. 90). 1In fact, in a similar manner we could have
proved the fcllowing result: Let Q be a closed, quasiconvex set
in a topological linear space X. Assume that Q absorbs each point
of the set P U (-P} where P is a bounded and convex set which is

of second category in itself, then Q absorbs P.
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IV, MAPPING T-ECREMS

The basic assumption for all thecrems of the last Section was
the boundedness of [(p). This is a fairly stringent condition which
is not always satisfied even if vy is finite. Consider, for example
the simple case when p is a seminorm on a finite dimensional normed
linear space. 1If N{p) contains elements different from zero, then

[T (p) is clearly unbounded, while on the other hand we shall see
later that in this case vy is already finite if r and p are both
seminorms.

In order to find more general finiteness conditions for
comparison-factors, transformations will now be considered which
leave these factors finite. In general, let Cc X and C< X be cones
in the linear spaces % and X. Consider the sets Hﬁja) and Hrﬂc) for
fixed F&>O and [k>0, and introduce on both the partial ordering
" 4 " defined at the end of Section 2. If then the mapping
F:Hcg(é)—)H (C}) is " « "-isotone, i.e., if

¢

(11) T 4 P for ’f,faeH&-(é) implies that r=Ff <« FP=p

then xp(r,c) is of course finite if Xﬁ(f,a) is finite. Therefore,
the problem is to determine when such a mapping F is isotone under

" 44 ". Clearly, F must satisfy the following three necessary condi-
tions: (i) F is non-negatively homogeneous of degree [*QF , (ii) for
each ﬁeHé;(f:) it follows that (FB)(x) =z o for all x€C,

(iii) if %.Pe HCQ(E’) and N(p) ¢ N(£) then N(FP)c N(FD).

Instead of investigating general conditions under which a
mapping F is " & " -isotone, we shall concern ourselves here only
with a special class of such mappings, namely those which are induced
by certain transformations between C and 6. A more comprehensive
investigation of general " « " -isotone mappings is planned for a

later paper.
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~
Theorem 4: Given the linear spaces X and X and a cone C C X.

Let G: Cw% be a non-negatively homogeneous mapping of degree w > O,
and consider the ccne GC = 6 c %, Fix constants a> 0, v > 0, and

a > 0; for each ﬁ € H#(f) the function p{x) = CF?)OO = O\FJ(GX)

is then contain?d in HM(C) where p&:EXVu). Furthermore, the mapping
Fp=p from H;(C}into HH(C} is "4{ "-~isotone, and more specifically,
if #,p€Ha(d) and N(p)c N(r) then Tp€ Hu(C), N(p) c N

and either ‘§=‘g}(?,6) and v = yp(r,C) are both infinite or v = v~

Proof: It is readily seen that p = F; € HM(C) if p € H&(é).
Assume therefore that +,p ¢ Hﬁ(é)and N(#) ¢ N(5}. Then x e N(p)
implies that a{éu(Gx)—_— p(xy=Q or Gx€ N(f) ¢ N(+¥) and hence
y{x) = O\\A~")(Gx)=o or x e N(r). Since é= GC there exists for every Xe ﬁ
an x€ C such that X=Gx. Hence l |

F0as FGa= (Lre) e 2 (L p(x\)m = "V (axn = g ()
or g‘é KV‘)) and gp=eo if Y=o, Reversely,

(O = ar’(6x) « a M€ a PR = e}‘)a'y}‘)(ﬁx\ = 5 p )
implies that g e g\‘) or @:oo Lf x = . Together therefore, either
both 2:00 and = , or x:ga.

As a first simple consequence of this theorem we see that the
degree p cf homogeneity has no influence on the problem of the
finiteness of the comparison~factor. In particular, without loss
of generality, it is always possible to consider instead of
p,r € HH(C) the functions p%r,ﬁ@\ € Hl(C). However, for most
practical applications it is usually more advantageous to work
directly with the original functions in HM(C)°

Example {4a): Let X be the space of all n x n complex matrices.

The Hadamard determinant theorem states that

n
(12) 00T | detGol® € T 20 x5l = pix)

e
3=y A=1
for all x € X, i.e., that yp(r,X) = 1. Let C be the cone of all
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ncn-singular matrices., Sirce r.x! = 0 whenever x ¢SC, we have to
prove only that g}(rﬂc) = 1, If x<£C, then x¥x is positive-
definite, hermitian, and can therefore be uniquely decompcsed in
the fcrm x*x = z*z where z is a ncr-singuiar, upper-triangular
matrix with ncrn-negative real elemerts on the main diagonal., Let
CT(=8)<: X be the cone of all such matrices; then the mapping

G: X€C— 2€ CT is non-riegatively homogenecus of first degree,

and in this case it happens that r(Gx) = r(X) and p(Gx) = p(x)

for all x€ C, i.e., that ﬁ =z pand T= r. In fact, introduce
)
the auxiiiary functions po(x) = ?“r|xjj| and ro(x) = |det(x)],
\‘Cl
then for all x€C
r(x) = (r (x))2 = r (x%*x) = r (z*¥z) = r(z) = r(Gx)
o o o’
p(x) = p_{x*x} = p_ (z%2} = p(z) = p(Gx)

For z € CT we now have
n n

p(z) = m2 nglz 2 ﬂ_ lz“ll-_— et (2)) = T(2)

=Y K= Pz
with equality holding if z€ C is diagonal. Therefore Xb(r,CT) =1
and hence by Theorem 4, Xb(r,c) = 1, ©Note that in this example,
Theorem 4 is actualily applied twice. From Xp(r,C) it is first
deduced that the comparison-factor of ry with respect to p, on
the cone of all positive definite, hermitian matrices has the
value one. Using the mapping x - x*x, a second application of
Theorem 4 then yields the final result.
(4b) Let X be a Hilbertspace and A: X —» S a linear, bounded, self-
adjoint and positive definite operator such that m(x,x) = (Ax,x) =
=M(x,x) for all x€ X with M>m>» 0. Set r{(x) = (Ax,x)(A_lx,x),

pix) = (x,x)z, then the Kantorovich inequality states that

[1A

r(x) [(M+m)2/4Mm]p{x)] for x€ X, IL,et X be the two-dimensional



{complex} number space ard corsider the compcsite mapping

| 3 -1
G: XEX—> 2z = ; € X where 3‘ = X{AX,X)+ {SQA X,X)
and 2z= X A%, x)+ J(A_lx,x)

. s . L3 . :
from X into X where U = (X JP.) 1s scme ncn-singular, real

2%2 matrix with the prcperty that U ( 17M) is a positive
vector, i.e., that §> 0, 7 ? 0. Then the linear operators
K°x = o Ax + (3 A“lx, ard L°x = X Ax + & a 'k are bounded, self-
adjoint and positive definite on H, and hence K and L exist and
have the same properties. Using these operators K and L, the

mapping G can be represented in the fcrm Gx —(H h)

A
For z = (3) & X consider the furictions

2(z) =(Bz,z) (B"lz,z) where B =(g r(:) and piz) = (5 + 'z ) : then

=(M32+m72)(M'1§2+m ?°%) = ()+——_(”£mm) § ?25

2.
, , M-mj M+m
£ Piz) (1+ —in L) (411 )2"‘( )

with equality holding if and only if '32 = 72. Hence

kA
2 ‘ K x sz

a B {M+m) A v - 2 2

§p (. %) = El Now £(ox} =(M Kx + m Lx, x) E&F + =X x)
M ™ . AL .
and hence for ' -t we obtain r{Gx) = r{x). It is
quickly checked tkat t.h,Ls choice of U is permissible, Introduce
2 2 A .
po(x) = { x| + | Lx" ) = ©p{(Gx), then Theorem 4 yields
2
(r %) = (M+m)
X‘po‘r’ T B Mm or
- M+ m\ 2
(Ax,xV (A x,x) & Ixx*  + lxl®* ) (xex)

This isa generalized form of an :Lnequallty of J. Diaz and

F. Metcalf [6]. A simple calculation shows that

(x,x) = “Kx“” + lleHL + 7‘:— (Rx,Lx) + %(Lx,Kx)

which proves the Kantcrovich inequality. At the same time it
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folicocws trmat Lr. the Fant:rovich 1rnediaclty . eguacity holds if and
cnly if "lel = Illxll ard ‘kx Lx' = 0, For f:i:rite dimersional X

this was shown by P, Herrici [7].

the two iregua.lties, but are rather interded tc show that these
inequalities represent instarces cf the generzl thesry here under
discussicn. The type of reascning .sed Zr. Exanple (4a) appears to
be quite genera..y applicablie, In fact, upon examining a number
of the known matrix inegualities 1t t.rned out that 1n each case
some suitable non-negatively hercgenecus matrix transformation
existed such that or tle rarge-cone the particu.ar lneguality
assumed 3 trivial f-rm and that Thecrem 4 assured the validity in
the general case.

~
L)

The mapping F: ‘W?Q}»—é H,' ) considered in Thearem 4 1is

¢

evidently orie-tec-cne. 1f we denote the range of F by R{F), there
- -~ .A“ - 3 o

exists an inverse mappiling }‘lz’RiF}—é %?¢C) ard ™' is again

lil<< H_isoton. - In fa.Cty if pﬁr GR:P', ; N‘zp) CN(r) and 5\ = XP (rlc) is

finite, 1t followg from the procf of Theorem 4 that

R e el . aA _ iy . .

THR = R < X‘W (' pi ik = 5/ pix) for all %¢d.
a2 Mo w2 I - - A Iz A B . R

Hence Nfp! ¢ Nir; and ciear.y § = x?ﬁr,cy is finite.

Thig cbservaticn wiil be really useful only if it is possible
to say what functions of H@[C} are contained in®(F). In this paper
we shall nct ccrsider this questicn in some generality, but instead
we will ornly present a special cuse, which is important fcr the
applicaticns. For this purpose the following concept will be
needed:

Let Q ¢ X be a subset ¢f the iinear space X, then p €R{Q) is
said te satisfy a -cordition on Q if there exists a constant €21
suzh that

{133 pix, - plyll € oA pix-y! whenever X,y,x-yY € Q



A function p& R(Q) which satisfies (13) has the following proper-
ties:

(1) 1f 0€Q, then p(x) 2 0 for all x€Q, and if p(0) = 0,
then «p(x) 2 p{-x)}) whenever x, -x€0Q

(2) If Q is a convex cone and p¢€ HC‘(Q) , then p is quasi-
convex of degree P=o<v£~ , and ife=1, then p is a
seminorm on Q. Reversely, every seminorm of X
satisfies a U-condition with & =1,

(3) If X is a topological linear space and Q a linear sub-
space, then the continuity of p at zero implies uniform
continuity of p on all of Q. This fact prompted the
use of the letter U for condition (13).

The proof of these three properties is immediate and has been
omitted here. Using this concept we obtain:

Lemma 5: Given the linear spaces X and X and a linear mapping L

from X onto }? Similar to Theorem 4 consider the mapping
p(x) = (FR)(x) = a f)‘)(Lx) from Hc:;(fi) into Hu(X) where@=2«.0 .  Then

the range of F contains the functions pé€ H,(X) which satisfy a

U-condition on X and have the property thaf; N(L) € N(p) where
N() = {xex | mx = o} .
The proof is immediate. In fact, let p satisfy the two
conditions of the lemma, then P(R) = é pl/\) (x), where % = Lx, is
a function of ch(f{) . To see this we need to show only that 'f) is
well-defined. Let LX‘\ = Lx, for some x,,x, € X. Then
X, - xze N{L) ¢ N{p) and, since p satisfies a U-condition,
plx,) = plx,).
This lemma together with the above remark about the properties

of the inverse mapping F~! form the basis of the next theorem:
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Thecrem 5: Let X and X be topclogical linear spaces and L an

open, linear mapping from X onto X. Assume that p,réf%r(x) both
satisfy a U-conditicn, that N{L) € N(p) ¢ N(r) and that r is
continuous at zero in the relative topology on S(p). Unigue
functions @,?Ef%f(%) then exist such that p(x) = P(Ix), r(x) = T(Lx)
for all xe X and that N(p)C N(T¥). Moreover, if r(ﬁ) is bounded,
then 2 = xﬁ(?,ﬁ) and Y = Xp(r,x) are both finite and equal to
each other.

Proof: Lemma 5 assures the existence of f),fEHr(f{) and it is
readily seen that N(P) € N(%). But then Theorem 4 applies and
states that 2 and y are either both infinite or both finite and
8 =X . Therefore, the theorem follows directly from Theorem 1
if we can show that T is continuous at zero relative to S(%). Set
I = {t real lltl< C} , then the continuity of r at the origin
relative to S(p) implies that
Dy = {xesm| 2ax<ed = st (1)

is an open set in S(p), i.e., that Q = S(p) N U where U is open in X.

(-l)(?(—l)

Q=58(p)n r
The openness of L assures that LU is open in %, and now it easily
follows that LQ = LS(p) A LU = S(P) A LU or that LQ is open in S(P).

201 (1) A LS(p) =

continuous at zero relative to S(ﬁ).

2 _l)(I) A S(P) and T is therefore

But LQ =
An important special case of this theorem is given in the
following

Corollary 5.1: Let X be a topological linear space and

p,T€ gr(x) such that N{p) < N(r) and that both p and r satisfy
U-conditions on X and are continuous at the origin. Then N(p) is
a closed linear subspace of X. Consider the gquotient space '
R = X/N{p) and the induced function P on %, defined by P(X) = p(x)
where x¢ R¢ . If r(ﬁ) is bounded under the quotient topology
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on X then X (r,X) is finite.

Procf: N (p) is a convex cone in X. From «p(x) =2 pi{-x) for
all x€X it fcllows that N{p) is indeed a linear subspace of X,
and since p is uniformly continuous on X, N(p) is closed. This
implies that the quotient map Lx = x + N(p) from X onto R is
linear, continuous and open. Moreover, N(L) = N(p). Hence,
Theorem 5 applies and the proof is complete.

This result can be combined with an argument of the type used
in Coroliary 1.1. To do this we begin with the following
observation:

Let X be a real linear space and assume that pé€ HC“(X)
satisfies a U-condition. Then the family of sets

m = {'UtC X l U, = ts(p) , t>o}
is already a local base of the origin for a vector topology
t} on X. This represents a slight extension of our result on the
vector topologies induced on X by symmetric and quasiconvex
functions of qﬁ(x). The missing condition here is the symmetry
of p. As before, we see that each Ut absorbs every point of X,

that Ut c Utln Ut2 for t £ min(tl,tz), and--since p is

quasiconvex of some degree ™ - that Ut + Utc Ut for
(o}

t £ to/2-( . Now p(-x) € op(x) for all x€X is equivalent with
-S(p) cexlé“s(p). But then )\Utc U, for all -1 £ X <€ +1
'(l/f‘)t

o

if we choose t € In fact, for 0 € A € 1, obviously
A tS(p) € tS(p) ¢ t S(p) whlle for -1€ A& 0, XtS(p) =

- it (-5 € Wex™sm) e Al £ s € £5(p). This
completes the proof that W is indeed a local base at zero of a
vector topolecgy on X. As before, it follows that this topology is

semimetrizable.
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Now we can phrase the above indicated result as follows:

Thecrem 6: Let X be a complete, semimetrizable real linear

space and assume that the functions r,péH&(X) (p ¥ 0) with
N(p) € N{r) are both lower semicontinuous on X and satisfy a
U-condition on X. Then the induced map ﬁ of p on % = X/N(p)
also satisfies a U-condition, and if R is complete under the
t? -topolegy induced by ﬁ on ﬁ, then Xp(r,X) is finite. |
Procf: Theorem 2, Part (b) assures that the functions p and
r are continuous at zero, hence they are uniformly continuous on X.
Then N{p) is a closed linear subspace of X and, accordingly, R is
a Hausdorff space under the guotient topology‘/CL induced on % by
the original topology 7, of X. Moreover, a well-known theorem 41&
states that (ﬁ,'&,) is complete and metrizable. The quotient map
from (X, T, ) onto (ﬁ, 25 ) is continuous, open, and linear. There-
fore, as in the proof of Theorem 5, it follows that on C%,f; ) the
induced functions ﬁ and T of p and r, respectively, are again
continuous at the origin. Furthermore, it is easily checked that
both ﬁ and T also satisfy U-conditions on %, i.e., that ?,ﬁ are
uniformly continuous on (ﬁ,i; ). Consider now the vector—topology'CF
induced by P on X. Since P(X) = 0 implies ¥ = 0, it follows that
(ﬁ,'t?) is also a Hausdorff space and hence complete and metrizable.
From the continuity of P on (ﬁ,%; ) it follows that the identity
mapping from (%,f; ) onto (ﬁ,'CF) is continuous and, of course,
one~-to-one, and therefore has a closed graph. But then the closed

graph theorem states that the inverse is also continuous, i.e.,

4] The image under an open, continuous linear mapping L of
a complete, semimetrizable,linear topological space X is complete

and semimetrizable (see e.g. [5], p. 99).
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that the tcpolcgies %; and Ty are equivalent. Hence VU {p) is a
bcunded set of {Qﬁ fb) and Corcllary 5.1 applies and assures the
finiteress of Kp{r,x).

There are two pessibillities of extending this theorem to
complex linear spaces. The least restrictive one rests on the
simple cbservaticn that in the complex case the space {%, f; ) can
also be considered as a real linear space and as such is still
complete and metrizable; mcreover, T and ﬁ remain continuous on
this space, If it is now assumed in the theorem that the (real)
vector topology Tp induced by ® on ﬁ, considered as a real linear
space, 1is complete, one sees, as before, that the two topologies on
this real space % are again equivalent., This is sufficient to
assure the finiteness of xp(r,x),

A different approach of extending the theorem uses the
assumption that p is complex symmetric and satisfies a U-condition,
i.e., that p is a seminorm on the (complex) space X. Then the
proof carries over word for word. A special case of this approach

is contained in the following useful Corollary:

Corollary 6.1: Let X be a complete, semimetrizable linear

space and r,p € Hl(X) {p $’(ﬂ continuous seminorms on X with
A
N(p) € N{r). Then the induced function P of p on X = X/N(p) is a

PN
norm and if X is complete under this norm, Xp(r,x) is finite.

V. THE FINITE DIMENSIONAL CASE

In this section some of the earlier theorems shall be applied
to the special case when X is an n-dimensional linear space. Due
to the special structure of such spaces, a number of simple results

about comparison-factors can be obtained. The presentation here is



A

mai .y wrnterded tc be an 1liusrr=tl o cf the ear . "=or res.lts:
mrre detsiled trestment of comrpariscrn-factors on finite dimensional
spacss L& puarred for a separate parer.

We begin with trte follicwirg twc basic lemmas:

Lemra 6: Let . be a ccrivex polyhedral cone in the n-dimernsional
linear space X. Trern every quasiconvex function péW?&IH is contin-
uces torn C+ at the origivn. <nder any Hausdorff topolcéy cn X,

Prcof: By assumpticn. there exist finitely many (non-zero)

verters g. I, w,q & C the extremal vectcrs cf Cj sach that
- [a Al
T = - = Z ] 2 0
{ = / T 9 Uk }

N
For x€C set r1ix = £ 7, ard let g be any norm on X. Evidently

i=1
rféPHw”\ ard N'r: = i 05 . Moreover. the set [ ‘r) is bounded,
since g x' % mgx q,gk,;-r x). 'xe€ C), and as a convex polyhedron,

" r' 1s a.so ciosed. Hence the continuous function g assumes its
mirimum on the corpact set | .r) and gix) = q(xo) for all x € [ (r)
implies that q:x ) =c > 0 because otherwise 0 € [ (r). Therefore
rix. & %—q:xl fcr ail x€C.

Suppcse now that ~ 1¢ the degree of quasiconvexity of p and
set ﬁ = ;243#, Repeated application of the simple ineqguality
max{@max,a,bj, c, € ﬁmaxfawb,ci {for any real. ncen-negative a,b,c)
then vyields for ail x €X

P /l
. ;

L & c
N ] F K ‘ v 4 . k !
£ X ? < B méx p\qk \max 7kr C rixy <£ Clq X
e

; thg

. = carnstart

B3

orn o+, p 1s continuous at zerc under the norm (g.
This compietes the procf since any Hausdorff topology on X is
equivalert with the g-rcrm topoliogy.

Ir generai. the iemma does rot remain valid if C is not a
rolyhedrai ccenvex cone, 1In fact, in that case, the values of g

for the infinitely many extremal vectors can be arbitrarily
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selected without violation of any of the other assumptions of the
lemma, and in particular these values can be allowed to tend toward
infinity.

Lemma 7: Let C be any cone in the n-dimensional linear space X
and assume that C is closed under some norm q on X. If pél%”(C) is
lower semicontinuous on C under g and has the property that
N(p) = { Oj , then S(p) is bounded under any vector topology Z on X.

Proof: Since p is lower semicontinuous on the compact set
F(gln C, it assumes its minimum on this set, i.e., there exists an
x < ['(g)n C such that p(xo) = . = min (p(x) | x c (g)nC). But

o] {
then : » 0, since p(xo) = 0 implies X, = 0 and therefore

0« N(g)n C which is impossible. Hence, p(x);g'fq(xf for all
X €C, or S(p) is bounded under the norm g. Since all norm topolo-

gies on X are equivalent, we also have S(p)CexS(qO), where d, is

the (i—norm corresponding to a basis e

.,en of X, i.e., where
)

1'°°

of zero and V a balanced and absorbing neighborhood of zero such

for x = Let now U be any r neighborhood
that the n-fold sum V + V + ... +V is contained in U. Then
?kek-c RV (k=1,..,n) for some *> 0 and hence for xéfS(qo) it
follows that x ¢ f(v+v+..+v)c 72U or altogether S(p)Lf#S(qo) < x[3U,
i.e., S(p) is bounded under T .

There are simple counter examples which show that S(p) can be
unbounded if p is not lower semicontinuous, even though N(p) = iOi.
However, the condition of lower semicontinuity in Lemma 7 can be

replaced by the weaker assumption that SZp)<«vxs(p) for some > O

where g?;) is the closure of S(p) under g. To show this, introduce

: —_— . ! | Pearase —
for x« C the function P(x) = inf( t | T x< S(p)), then PE€ Hl(C).
Suppose that x = C and P(x) = 0. There then exists a sequence tn> 0,
li%:tn = 0 such that (l/tn)x < §(§)C ~S(p), and hence we find
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that.

M ..L s M
\ : X €
np‘tn X/ & o(rtr‘

or g{x) =0, i,e., x = 0, or N/P} ={0}. Evidently P is lcwer

p.x: =t

semiccntinucus or. C, Altcgetler therefore, Lemma 7 applies for

——

P; ard Sip), i.e,, also Sip), is a bounded set under any vector
topolegy cr X,

As a direct consequence of these lemmas and of our earlier
results we cbtaln the following

Theorem 7: Let C be a cone in the n-dimensional linear space X

and r,p€H& cy (r,p$ 0) such that N{p) < N{(r). Then Xp(r,C) is
finite if one cf the following conditions is satisfied:
(1} C is closed under some norm g of X, p is lower semicontin-
ucus on C under g, Nip) = iO} , and r is continuous at
zero on C under any vector topology of X.
(2) C is a polyhedral convex cone, r is quasiconvex,
p 1s lower semicontinuous on C under some norm (g,
and Nip) = {0} .
{3) C is a linear subspace and both r and p satisfy
()=-conditions on C.
(1} follows from Lemma 7 and Theorem 1, Lemmas 6 and 7 together
with Theorem 1 imply (2}, while the same lemmas together with
Theorem 6 yield (3.
We conclude this secticn with a simple example which contains
some of the introductory results provided by M. Golomb and
H, Weinberger in [ 3 ], pp 121.
Suppose that for some infinite dimensional linear space X the
functicn<qe}%jxﬁ satisfies a U-condition and has the property that
the lirear space Xl = N{q) has finite defect. Let r,pEHu(X)(r,p#O)

be some other functions which satisfy U-conditions on X and are



"

such that Nip: AN X NOx x »d that = S I § ini
fl FeN X, C XN }1 and that X\O J«p\r, 1° is finite,
Form tlie new fuorction p = p+quZA(Xf , then 3,15 ‘r,X) is finite.

Let X, be ar. algebrai: copplerent of X, in ¥, i.e., assume

2 1
that X1® X, = X. By assumpticrn, the dimensicn of X, is finite.
Since Ni{gq.N X, = {O} C Nipin X, ard, gimilarly, N{g)n X,c N(r)f\Xz,

it fcllows from Thecrem 7 Part (3) that pix) < qu(x) , Ti{x)€ xzq(x)

for all xé‘xz arnd with finite Xl and XZ“ Let x€ X be arbitrary,
= + X. € X, X

and x x1 Xy xlé Xl, x2 € XZ’ then

3

T} & S S
r x) &£ “rr“xl‘ + rxxz) < X Xop(xl) + Aﬁzq(xz) <

‘N

o(1:‘9(13 &op('XZ) * O(r X‘Op(x‘ M £2q(X) <
£ (o(ra(p £ &+ alx) oy px) £ kiglx) + p(x))

where k = max o X
r 8o

in the U-conditicns of r and p, respectively. This completes the

\
, c>(r Ko“pxl + X‘z, and c(r,c(p are the constants

procf of the abcocve statement.

VI. SARD'E QUOCTIENT THEOREM AND THE BEYPERCIRCLE INEQUALITY

In this Section we shall return to the special case of
Example {lc). The application of the results of the previous
Sections to this example prcvides a direct connection to important
work cn bounds for the error of best approximations, as developed,
for example, by A, Sard [2], M. Golcmb and H., Weinberger [3],

P. Davis (8], and others. At the same time, this connection pro-
vides us with several possible methods for the computational
evaluation of compariscn-~factors in this particular case.

The reascn for the pcssibility of further development of the

theory of comgarison-factors in the case of Example {lc) is



cortaLned o ovre following simils reapresantitlicrn thel rem:

Tracren B: let Py ardyp, be szpi-oinmes on tre lirnear spaces
X ard o, respertively, ard let Z be a ncrned lirear sgpace, Tonsider
the lLinesr ope ‘re Ay X =Y. k: X-—»Z with dcralrs QBC DAC X,
and ass.me that bkx = 0 wherever Ax = 0 for x € DBn Suppose that on
D_ the camgavis:. n facror x== X};I,Dbf of rix) = lexll with respect
to pix! = ijAxi 1e finite, Ther there exists a linezar operator
T: AX - Z =zuth othat 8x = AR for il x € DB and C is cocntirucous
with respect tec e . ard the rorm ou Z. Moreover,
f = sup {“f"yll \€DL . Poly. = 1}( .

The proof 1s immediate. Set ¢y = Bx for vy = AX€EAXC Y,

ther. C 1s ev.dently a weli-defined linear operatcr on AX and from

hovll = lexll €y p..iAx) = y p.ly) , yé€BX
it fclilows trhat C is continuous on AX and that ¥ is the norm of
C on AX.

Cbserve that A and B need not be continuous, but, evidently,
if A 1s c-ntinuvods thern rhe finiteness of X implies that B is also
continucus,

The fcilrwing special case cf Theorem 8 was just recently
discuscsed by M. E. Gurtia (9]: If zZ = Rl {the real axis}, then
B and C are lirear functlorals cver DB and AX, respectively,

Hence the Hatin-Banach theorem assures the extendability of C to
a linear furctional C cver ail of Y such that llgyﬂ < B pY(y)for VE Y,

The fol.cwing exampie constitutes an adaption of a representa-

tiocn theorer of A, Sard,fZ], tc our discussion:

Example 5: Let X = \nLO,}} be the space of all n times continuously

differenrtriablie real qu-t;ﬂrc cn L = [0,1] with the norm
7

Oc = .
x| = max [ up lx (tl] . On the space Y = R" % ¢ LI] introduce
te



the ncrm |yl = max l r e , su t ] . Firally,
ljﬁyl I, Il sup |4 )| y

let 2 = R'. For fixed «€ I define the linear operator A: X-Y by
Ax = {:x(u), X'(d),...,x{n'l)(d), X(n)(t)}e Y

then clearly laxil € lIxll . Since ax = 0 only if x = 0, there

. . -1
exists an 1nverse operator A —, namely n-1

-1 o = (t—°<)q .(t"'_s)._
(14) A7y = x{t) =1, + — kL (k1 T ) D

At the same time, this representation of A_l shows that A maps

Q(s) ds .

X onto Y, i.e., that the domain of A_l is all of Y. Moreover,

the estimate uA_ly" £ el yll follows immediately from (14), which
proves in turn that for the function p(x) = Wlaxll € Hl(X) the set
S{p) is bounded. Let ncw B: X->Z be any continuous linear function-
al on X, and set r(x) = WIBx| . Then N(p) = {OB C N(r) implies
that ri{x) € Kp(x) and Theorem 1 assures the finiteness of

¥ = Kp(r,x). Hence it follows from Theorem 8 that there exists

a continuous linear functional C on Y such that Bx = CAx for x€ X,
Since R" ® CO[I] = Y, we obtain the following well-known

representation "

]
Cy = gck7k+of'z(5) d A(s)

with unique coefficients c Ch and a unique function X\ of

g
bounded variation on I. Altogether therefore,

Bx = go ck+lx(k) (o) + ojx(n)(s) a \(s)

In [2], A. Sard uses this result extensively to obtain error
bounds for best-integration formulas. Briefly, the approach is as
follows: Let X = Cn[I] and Y = CO[I] with the same norms as in
the example. Suppose B:X-—-»Rl is the remainder functional of an
approximate numerical integration which is exact when x is a
polynomial of degree less or equal to (n-1). If A: XY is

(n)
X

defined by Ax = , then this last condition is evidently
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equivalent to the assumption that Bx = 0 whenever Ax = 0, Now
Theorem 8 can be applied and, as in the example, the representation
Bx ==0Jd x(n)(s) d X\ (s) is obtained where A is again a function of
bounded variation on I. The best error bound for the numerical
integration formula is the norm of B.

The assumption of the finiteness of gb(r,x) used in Theorem 8
can of course be replaced by applying one of the relevant theorems
of Sections III and IV. The simplest result appears to follow

from an application of Corollary 6.1.

Corollary 8.1l: Let X and Y be Banachspaces and A: X—Y, (A % 0),
a continuous linear operator from X onto Y. Suppose Z is any
normed linear space and B: X-» Z a continuous linear operator on X
such that Bx = 0 whenever Ax = 0 (xe€ X). Then for the functions
p(x) = llax|l, r(x) = lBxll, the comparison-factor & = gb(r,x)
is finite and hence, by Theorem 8, there exists on Y a continuous
linear operator C: Y-»Z such that Bx = CAx , (x€ X), and & is the
norm of C on Y.

The proof follows immediately from Corollary 6.1 if we can
show that under the norm‘% induced by p on the quotient space
ﬁ = X/N(p), this space (%,ﬁ) is complete., Clearly, % is complete

under the norm topology induced by the original norm on X. More-

A ~ A
over, by assumption, the induced linear operator A: X—>Y maps X one-

. ~-1 .
to-one and continuously onto the Banachspace Y. Hence, A exists

and is again linear and continuous. But then the norms

&) = | 2%\ anda W%l are equivalent on X, i.e., (ﬁ,ﬁ) is complete.
Corollary 8.1 represents a slight generalization of Sard's

"Quotient Theorem", since Z is not assumed to be complete. Of

course, Corollary 8.1 could have been proved directly using the

techniques of Theorem 6 which are conceptually similar to those

used in [2] for the proof of the quotient theorem.
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Thecrem 8 pravides 3 representaticn cf X 4s a r.rm of some
linear cperator 7. At the szme tume, there is i clrmse relation
between this thecrem and the mapring thetrems cf Section 4., For
the sake of simplicity, assume that Dk = DA = X, 6 thea -~ as in

Lemma 5 - we can define the rmapplng F: Hlfyf—4>Hl

gix) = JAx,, x€Xx., for every functicn aé'Fifﬁﬂ The seminorms

"X, by setting

p. T €H,X; of Thecrem 8 both satlsfy [-cenditicrs and - because

1
NfAY = NipY ¢ N:r: - they are therefcre centained in the range of F,
This means that furcticns L. T e H‘jyﬁ exist s.ch that

’ ‘ 3 ol
Tiy, where y = Ax., Since P and T are

pY(Ax) = Piy: and |l Bx
unique, we find that Piy! = p,y! and Tiy: = lcyll , vEVY,

In the special case when Y € X this observation leads to the
well-known hypercircle inequality, which has often been used to
find error bounds for best approximations, {see for example [3]
and [8]),

Suppose M (=¥} 1is a linear subspace of the linear space X
and M' an algebraically complementary linear subspace of M. Let
P: X-» M be the i unigue) projection from X onto M belonging to
the decompcsiticn M (@ M° = X, ard Q = I-P the corresponding
projection from X ontc M', On X intrcduce some seminorm ¢, and
as before, let Z be 2 ncrmed linear space and C: X—»2Z a contin-
uous linear operater. Set rixi = || oxll , pix) = gq{Fx). If
N(g) A M ¢ EXIZ), it follows from Corollary 1.1 that (= Xb(r’M)
is finite and we find that lCExll ¢ X qg.Px} for all x € X, For
the applications it is useful to restrict x to some linear

variety V

X + M,where:&aé X 1s a fixed point.. Then clearly

I

PXx = x-Qx K- on , € ., and the ineqguality

* - O ) < (% ) V
(15) Nox - clox Ml € paixQx) ., x€V,



with ¥ = sup [ Hex ( x €M, g(x) = l] can be considered a
basic as well as general version of the hypercircle inequality.
. In order to arrive at the usual form of the hypercircle
inequality - as for example given in [10] , p 230 - suppose that
X is a Hilbertspace, Z = Rl, and that M is a closed linear sub-
space of X. Let M' be the orthogonal complement M'L of M, then

P is the orthogonal projection onto M and P is continuous. Hence,
2

’

the Pythagorean theorem appiies: llx - onu 2 HXI(Z - "onﬂ
and if x is restricted to the so-called hypercircle sc='{.xe.x‘
\}(é\h |xll < c}, then |lx - onuzs (c2 - “onﬂ ). Since
C is now a continuous linear functional on M, we have C(x) = (b, x)
for all x€M where b€ M is a uniquely determined point. Then
- x = Il oIl ana altogether y
: (16) lex - clox )| £ Hnll (& - llex | &, xes,.
’ Of course, for lleo" > ¢ the set SC is empty and (16) vacuous.
1f Wox || £ ¢, equality holds in (16) for z o= Qx_ + A b where
A= (- “QXOH 2;&’/ ol when NI bll # 0, and A = 0 otherwise.
For b = 0 this fact is trivial and for b # 0 it follows immediately
from

v,
lcz - claz)l = ALl = 1aph = & - nex®™

For the case of the hypercircle inequality (16), several
methods have been discussed in the literature for the computational
evaluation of the comparison-factor Y = \lbll , i.e., for the
evaluation of the norm of the linear functional C on the subspace M.
Basically, there are three major methods:

(a) The use of orthonormal systems , used chiefly by P. Davis [8]

to compute best error bounds for a number of standard

numerical integration formulas.
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(b) The method of reproducing kernels , as applied to this

particular problem by M. Golomb and H. Weinberger in [3].

{c}) The variational approach , also discussed in [3], and

applicable when X, for example, is the Hilbertspace of
absolutely continuous real functions x with square-
integrable derivatives over [O.gl and when'the inner-
product has for instance the form (x,y) =of(x'y' + kzxy)ds.

For details, reference is made to the original publications
where also other references are given.

In general, the numerical evaluation of the norm of a con-
tinuous operator C on some Banachspace presents many open questions.
The most powerful methods apply only in the case when C is a linear
functional and when a representation theorem is available for C.
This is the particular condition used in methods (a) and (b) above,
as well as in the application of Theorems 8 and 9 as developed by
A. Sard in [2] . It may be interesting to investigate similar
approaches when C is no longer a functional. Representation
theorems are known for various types of linear operators on specific
function spaces, and the application of these theorems for obtaining
upper bounds for the norm of the operators may well provide a usable
approach to the problem of evaluating comparison-factors in these
cases,.

The direct evaluation of Y - as in method (c) or related
methods - appears to offer particularly challenging possibilities,
but at the same time it also poses a variety of unsolved problems,
especially from a numerical viewpoint. If C is a self-adjoint,
completely continuous operator on a Hilbertspace, the power of the
eigenvalue theory for such operators should provide particularly

gocod methods. At the same time, it would be highly interesting to



explore iterative methods which yield monotonically decreasing

upper bounds for the comparison-factor.
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